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Introduction

The existing paradigm of healthcare is based on the average-
patient one-size-fits-all approach to deliver diagnostic, 
therapeutic and preventive interventions. However, it has 
become alarmingly clear that, while practical to implement, 
these broad clinical approaches fail to adequately address the 
medical needs of a significant portion of the population (1).  
When it comes to pharmacotherapy, for example, only 40–
60% of patients respond to treatment (2,3). The variable 
drug treatment response rates now widely documented 

across medical literature are due to considerable inter-
individual variability. A more targeted approach to medicine 
is thus clearly needed to optimise treatment, which has 
prompted the emergence of precision medicine. The terms 
precision medicine and personalised medicine have been 
used interchangeably, but the preferred current terminology 
is precision medicine, as there is a consensus that the term 
personalised medicine could be misinterpreted to imply 
that treatments and preventions are being developed 
uniquely for each individual. From an epidemiological, 
pharmacological and biological perspective, the scale of 
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inter-individual and intra-individual variation in drug 
response as indicated above, it is pragmatic to assume 
that personalised treatment at an individual level is rather 
aspirational. Identifying and predicting subgroups with a 
better or worse response is likely more achievable and has a 
more realistic potential to revolutionise medicine.

In contrast to the one-size-fits-all model, precision 
medicine aims to integrate an individual’s unique features 
from clinical phenotypes and biological information 
obtained from imaging to laboratory tests and health 
records, to arrive at a tailored diagnostic or therapeutic 
solution with a higher chance of success (1). It is expected 
that patients will benefit from early accurate diagnosis, 
higher treatment efficacy and fewer adverse drug reactions, 
while broader improvements include greater healthcare 
savings and economic productivity. Precision medicine 
thus encompasses both diagnosis and prediction with 
greater accuracy than current clinical and epidemiological 
guidelines. The notion of precision medicine emerged 
from the dramatic successes in the identification of distinct 
subpopulations within certain cancer categories through 
advances in genomic sequencing followed by effective 
targeting of these molecular cancer subtypes by specific 
drugs. Patients with chronic myeloid leukaemia whose 
tumours harbour the BCR/ABL translocation (‘Philadelphia 
chromosome’) are successfully treated with the drug 
imatinib that inhibits tyrosine kinase (4); patients with 
cystic fibrosis can benefit from the drug ivacaftor based on 
mutations in the CFTR gene (5); and the poster child of 
personalised medicine, trastuzumab, is indicated for patients 
with metastatic breast cancer overexpressing the human 
epidermal growth factor receptor-2 (HER-2) (6). These 
examples, amongst others, demonstrating how unique 
genetic or molecular perturbations in an individual can 
lead to tailored therapy, led to strategic initiatives to scale 
up precision medicine to replicate these successes for other 
diseases. 

Unlike conventional medicine, precision medicine 
is highly data-intensive and requires health data flow 
from individual medical records into different research 
contexts—for instance clinical trials, genomic research, 
pharmacovigilance, epidemiological studies—and then 
back into a learning healthcare system for the research 
outcomes to be integrated into practice (7). Research 
is an integral component of precision medicine, which 
requires data collected during the course of clinical care 
to be applied in the study of real-world clinical outcomes 
to enhance generalisability of the interventions. The 

recognition of the value and potential of precision medicine 
has led to the development of initiatives to accelerate and 
support research by collecting vast amounts of clinical and 
biomedical data. For example, the All of Us (AoU) research 
program (8) in the United States (formerly known as the 
Precision Medicine Initiative) aims to gather data from 
at least one million consenting individuals in the form of 
electronic health records (EHRs), biomarker and genomic 
analyses of donated tissue samples, mobile health devices 
and surveys. Similar initiatives have sprung up in both 
the public and private sectors across the world: 100,000 
Genomes Project and UK Biobank in the UK; BioBank 
Japan; China Kadoorie Biobank; Biobank Graz in Austria; 
and FinnGen in Finland (9-12). These repositories of 
observational data are critical to the delivery of precision 
medicine despite the known limitations of observational 
studies to infer causality. This is described below, and 
some of the justifications for turning to observational 
data include the relative ease to collect large datasets, the 
difficulties in setting up randomised controlled trials (RCTs) 
for rare diseases and the huge sample sizes required for 
pharmacogenomic studies. Equally important to big data 
are the artificial intelligence (AI) tools which enable the 
extraction of clinically meaningful insights from the data 
(Figure 1).

AI and Machine Learning (ML)

The terms AI and ML have been used interchangeably, 
but it is important to understand the differences between 
them. AI is a suite of technologies which enables a machine 
to simulate human behaviour. Two fields of AI which are 
particularly relevant to healthcare are ML and Natural 
Language Processing (NLP) (13,14). ML allows a software 
or algorithm to automatically learn from past data without 
programming explicitly, while NLP gives machines the 
ability to read, understand and derive meaning from human 
languages. We shall focus primarily on ML in this review, as 
most AI applications in healthcare are based on this subset 
of AI. The limitations of traditional statistical tools, such 
as linear and logistic regression which are commonly used 
for clinical outcome prediction, are well documented—
they perform poorly with nonlinear relationships or 
high-dimensional data and fail to account for unknown 
interactions between input variables. Furthermore, in the 
era of big data, they are unnecessarily labour-intensive (15).  
In contrast to relatively rigid traditional statistical methods, 
the inherent flexibility of ML along with the scope for 
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automation and the ability to learn from input data 
to progressively improve model performance without 
requiring explicit programming suggest ML is the right tool 
to be considered for precision medicine.

Whilst  a  detai led descript ion of  di f ferent  ML 
algorithms is beyond the scope of this review, a summary 
of ML algorithms and their applications in healthcare 
research is presented in Table 1 (14). Although this is not 
an exhaustive list, it reflects the breadth of algorithms 
and clinical questions that are being explored using 
ML. ML can be categorized into four learning types: 
supervised, unsupervised, reinforcement and deep learning  
(Figure 2) (14). Supervised learning algorithms use a dataset 
labelled by humans to predict a specified or known outcome. 
Unsupervised learning algorithms, on the other hand, 
find patterns and associations in unlabelled data without 
human intervention. Supervised learning algorithms carry 
out classification and regression tasks, while unsupervised 
learning algorithms are limited to clustering. Reinforcement 
learning is a hybrid of supervised and unsupervised learning, 
which maximises the accuracy of algorithms using trial and 
error and thus is not applicable in the healthcare setting. 
Finally, deep learning, which is based on the structure of 
neural networks of the brain, is an autonomous system with 
multiple hidden layers of data processing. Deep learning 
algorithms independently find patterns even in unstructured 
data, which are then employed to make predictions about 

new data (111). 
NLP overlaps with ML (deep learning in particular) and 

has gained traction as a tool for data extraction from EHRs. 
A significant proportion of medical data contained in EHRs, 
such as descriptions of clinical features and diagnoses, is 
unstructured free text and the value of NLP is recognised 
for parsing clinical notes into practical data inputs including 
risk assessments (14,112). Furthermore, applying NLP 
to scientific literature has highlighted its potential for 
drug repurposing associations (113). In addition to these 
types of data mining, NLP may also have a future role in 
facilitating and automating patient engagement through 
chatbots. Chatbots simulate human conversations (in both 
written and spoken form) and are already widely used by 
online customer support services or virtual assistants such 
as Amazon Alexa. In healthcare, chatbots could serve as a 
stand-in for a physician as the first port of call to advise on 
symptoms and give preliminary diagnoses, freeing up some 
of the time of healthcare workers to focus on tasks which 
cannot be automated (114). 

Prospects for AI in precision medicine

Success in implementing precision medicine in healthcare 
requires the communication and participation of people 
across a wide spectrum of disciplines including molecular 
biology, genetics, pathology, informatics, computer science, 

Figure 1 Integration of multiple types of data into biobanks and electronic health records (EHRs), machine learning models and finally 
clinical implementation.
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Table 1 Commonly used machine learning models in healthcare with examples of applications

Clinical study ML algorithm Reference

Rapid diagnosis of depression Boosting algorithm (16)

Improving warfarin usage for the elderly inpatients Boosting algorithm (17)

Predicting sepsis using vital sign data in the emergency department Boosting algorithm (18)

Predicting adverse events in patients undergoing major cardiovascular procedures Boosting algorithm t(19)

Predicting urinary tract infections in the emergency department Boosting algorithm (20)

Classifying lung nodules Boosting algorithm (21)

Predicting transition from gestational diabetes mellitus to type 2 diabetes Decision tree (22)

Identifying diffusion lesions in acute ischemic stroke Decision tree (23)

Diabetic foot amputation risk analysis Decision tree (24)

A top-down searching approach for diagnosis Decision tree (25)

Performance surveillance of infant incubators Decision tree (26)

Improving the prediction of total surgical procedure time Decision tree (27)

Predicting graft survival for kidney transplantation Ensemble methods (28)

Predicting treatment success in patients with substance use disorder Ensemble methods (29,30)

Diagnosing breast cancer Ensemble methods (31)

Detecting patients’ asthma control level Ensemble methods (32)

Early prediction of outcome of cognitive behavioural therapy Ensemble methods (33)

Automatic fall detection system for real-life monitoring Hidden markov (34)

Detecting QRS complexes in single-lead ECG recordings Hidden markov (35)

Real-time circadian phase estimation Hidden markov (36)

Multi-channel EEG based automatic epileptic seizure detection Hidden markov (37)

Real-time calibration and automatic drug dosing recommendation for chemotherapy treatment 
plans (Curate.AI)

Hidden markov (38)

Classifying prognostic phenotypes in heart failure patients Hierarchical clustering (39,40)

Detecting disease-specific clusters within aortic arch images Hierarchical clustering (41)

Clustering blood results in paediatric inflammatory bowel disease Hierarchical clustering (42)

Predicting therapeutic response in IgG4-related disease Hierarchical clustering (43)

Detecting thyroid diseases Hierarchical clustering (44)

Classifying venomous and non-venomous snake bites KNN (45)

Analysing and identifying kidney stone KNN (46)

Predicting retinopathy risk KNN (47)

Classifying lower back pain KNN (48)

Distinguishing physiological from pathological patterns of hypertrophic remodelling KNN (49)

Diagnosis of coronary artery disease LDA (50)

Table 1 (continued)
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Table 1 (continued)

Clinical study ML algorithm Reference

Differentiating basal cell carcinoma and healthy skin LDA (51)

Early diagnosis of mild cognitive impairment in Alzheimer's disease LDA (52)

Predicting and classifying risk level of breast cancer LDA (53)

Detecting and classifying dementia subtypes LDA (54)

Identifying distinct bronchiectasis phenotypes LDA (55)

Monitoring physician prescribing patterns and ensure the appropriateness of treatment Linear regression (56)

Predicting conversion time to Alzheimer’s disease Linear regression (57)

Predicting hypoxemia and Covid-19 disease outcome based on nasopharyngeal viral load Linear regression (58)

Predicting maternal vitamin D status during pregnancy and lactation Linear regression (59)

Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease 
patients

Linear regression (60)

Differentiating severe septic patients with acute respiratory distress syndrome from those 
without

Logistic regression (61)

Early identification of patients with acute decompensated heart failure Logistic regression (62)

Predicting early- and long-term mortality in hospitalized patients at risk of malnutrition Logistic regression (63)

Predicting chemotherapy and radiotherapy outcome Logistic regression (64)

Predicting autism spectrum disorder diagnosis Logistic regression (65)

Microprocessor-based device for real-time prediction of acute cardiovascular events Naïve Bayes (66)

Predicting atherosclerosis progression from ultrasound images Naïve Bayes (67)

Detecting clinically important colorectal surgical site infection Naïve Bayes (68)

Improving detection and diagnosis of bone tumour Naïve Bayes (69)

Perceptron multilayer for classifying the risk in paediatric congenital heart surgery Naïve Bayes (70)

Detecting diabetic retinopathy Neural network (71)

Classifying skin cancer Neural network (72)

Estimating optimal dose for intensity-modulated radiation therapy in prostate cancer patients Neural network (73)

Identifying autism spectrum disorder from the brain images Neural network (74)

Automatic cardiac arrhythmia detection on ECG Neural network (75)

Identifying a molecular network predictive of advanced coronary calcium Neural network (76,77)

Predicting knee osteoarthritis risk Neural network (78)

Predicting adverse drug reactions and identifying the responsible molecular substructures Neural network (79)

Predicting lower intestinal bleeding and need for surgical intervention Neural network (80)

Automated classification of skin lesions using images Neural network (81)

Automated detection of ischemic stroke Neural network (73)

Chronic obstructive pulmonary disease staging and acute respiratory disease prediction in 
smokers

Neural network (82)

Table 1 (continued)
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Table 1 (continued)

Clinical study ML algorithm Reference

Risk assessment for major complications and death after surgery Neural network (83)

Predicting early graft rejection in antibody incompatible kidney transplantation Neural network (84)

Reinforcement learning for blood pressure regulation in post-cardiac surgery patients Proprietary algorithms (85)

Predicting medical adherence of patients with heart failure Proprietary algorithms (86)

Automatic IMRT planning in Philips Radiation Oncology Systems for head and neck cancer 
treatment

Proprietary algorithms (87,88)

Automated speech analysis to measure and predict psychosis onset Proprietary algorithms (89,90)

The Seattle Heart Failure Model for heart failure survival analysis Proprietary algorithms (91)

Predicting future myopia development in school children Random forest (92)

Differentiating pituitary metastasis from autoimmune hypophysitis Random forest (93)

Predicting early graft rejection in antibody incompatible kidney transplantation. Random forest (94)

Predicting hospitalization and outpatient corticosteroid use in inflammatory bowel disease 
patients

Random forest (85)

Predicting rheumatoid arthritis mortality Random forest (61)

Predicting in-hospital length of stay among cardiac patients Random forest (95)

Predicting presence of advanced coronary artery calcium Random forest (96)

Predicting risk of suicide attempts over time Random forest (78)

Assessing risk of fibrosis and other liver-related outcomes in chronic Hepatitis C patients Random forest (97)

Predicting long-term cognitive outcome following breast cancer Random forest (98)

Predicting readmission rate in heart failure patients Random forest (99)

Automatic detection of seizures in single-channel intra-cranial electroencephalograph recording SVM (100)

Detecting structural imaging signature of schizophrenia SVM (101)

Differentiating responders and non-responders to depression treatment SVM (102)

Discriminating between hypovolemia and euvolemia using photoplethysmographic signals SVM (103)

Predicting medication nonadherence in Crohn’s disease maintenance therapy SVM (104)

Landmark text mining example of disease-chemical relationships to predict a benefit for using 
fish oil in Raynaud’s syndrome

Text mining (105)

Information retrieval and document triage in the Pharmacogenomics Database Text mining (106)

Rule-based text mining approach for microRNA expression in cancer cells Text mining (107)

Phenotype extraction from electronic health records Text mining (108)

Patient outcome prediction through similarity analytics Text mining (109,110)

KNN, K-nearest neighbours; LDA, linear discriminant analysis; SVM, support vector machine.

statistics and clinical science along with health economists, 
health insurers and hospital managers. The potential roles 
of AI span data-integration, making work-flows efficient 
and error-proof, generating clinically meaningful insights 

from big data, and developing new medicines. However, 
the published evidence across all these domains are 
predominantly represented by early-phase in silico studies 
with little validation and do not fully cover potential sources 
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of bias specific to AI systems (115). In relation to precision 
medicine, ML approaches mainly feature in three areas with 
tangible successes evident in the first two (116): (I) prediction 
of pharmaceutical properties of molecular compounds 
and targets for drug discovery (117); (II) faster diagnosis 
using pattern recognition and segmentation techniques on 
medical images (from, e.g., retinal scans, pathology slides 
and body surfaces, bones and internal organs) (71,72,118); 
and (III) the development of predictive models using deep 
learning techniques on multimodal data sources such as 
genomic and clinical data (119). The paucity of use cases 
of AI in precision medicine may partly be related to studies 
not conforming to RCT level rigour that is crucial for 
regulatory approval and clinical adoption. 

Technical challenges of ML in precision medicine

Despite technical advancements in informatics, computer 
science and mathematics, the development and application 
of ML models remains a challenging process. When 
building ML models, data is split into training and testing 
sets. The training set teaches the model, while the model’s 
performance is evaluated by how well it describes the testing 
set. Researchers typically split the data at random. However, 

data in real life are rarely random and show trends over 
time, for instance differences data collection processes, 
measurement methods or changes in guidelines. These 
variations can have an impact on prediction accuracies.

Overfitting and underfitting

Overfitting is a major issue for all ML models. Overfitting 
arises when an algorithm learns to make rules which fit 
both random noise and meaningful signals in training data 
accurately and specifically, but fail with testing data (120). 
The resulting algorithm can thus perfectly predict the 
training data but only at the price of its performance on 
new data. Because of the availability of an enormous variety 
of clinical variables recorded in EHRs and biobanks, it 
can be tempting to develop a highly specific model with a 
multitude of predictive features for a given disease. Such a 
model is likely to show excellent performance in its training 
dataset but fail in validation, limiting applicability in the 
real world, resulting in little more than wasted healthcare 
resources. This is the opposite of underfitting, which occurs 
when a model is too simple (informed by too few features 
or regularized too much) making it inflexible in learning 
from the dataset (121). Overfitting and underfitting can 

Figure 2 Subtypes of machine learning, with representative examples of models. CNN, convolutional neural network; KNN, K-nearest 
neighbours; RNN, recurrent neural network; SVM, support vector machine.
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be overcome by making modifications to the training set 
or by optimising the parameters of the model. For these 
reasons, training of a good model often requires large 
datasets, competent informatics skills, domain knowledge 
and an adequate means of validation (121). When a model 
is developed by an ML expert with little knowledge of 
the clinical context of variables within an EHR, feature 
selection may be misguided leading to erroneous predictions 
and poor model performance. Thus, collaboration between 
medical and informatics experts is essential to extract value 
from big data. 

Interpretability and explainability

As ML (especially deep learning) models grow more 
sophisticated and powerful with multiple hidden layers 
of data transformation and analysis between the input 
and output data, their decision-making process becomes 
more challenging for a human to conceptualise. While 
interpretability implies some sense of understanding how 
the technology works, explainability implies that a wider 
range of users can understand why or how a conclusion was 
reached. The complex architecture of deep learning models, 
for example, makes them more difficult to understand 
and interpret than their supervised and unsupervised 
counterparts (111). Lack of interpretability presents one 
of the greatest barriers to the acceptance of ML into 
clinical practice. For instance, if a clinical expert and an 
ML algorithm are presented with the same patient data 
but arrive at different diagnoses, it may not be possible 
to interrogate the algorithm to find where and why the 
decision-making processes diverge. The translation of these 
so-called “black-box models” into clinical practice thus 
requires institutions and researchers to place a significant 
amount of blind trust in the development process of the 
algorithms, as well as in the soundness of the data on 
which the models were trained, tested and validated. This 
is particularly problematic in clinical practice given the 
potentially devastating and long-lasting consequences of a 
faulty model to patients’ wellbeing (122). 

Each model is unique and often requires a combination 
of mathematical equations, verbal descriptions and visual 
representations, such as Bayesian networks, to communicate 
and justify their inner workings (123). The development 
of interpretable models will not only improve trust in 
their logic but will also allow the users of the model to 
identify faulty or infeasible outputs. Furthermore, the 
ability to interpret and question a model’s behaviour may 

reveal patterns and associations in data which would not be 
recognised by humans, providing valuable scientific insight. 
The importance of this is reflected in the considerable 
amount of research being carried out in the field of 
explainable AI (XAI) (124). 

Observational data and causality

While it is clear that ML can be used to discover previously 
unknown associations in observational data, it is often 
forgotten that observational data cannot be used to directly 
infer causality. Establishing causality requires not only 
sufficient information about the environment of measured 
variables, but also the removal of various biases that 
undermine observational studies (125). RCTs meet both of 
these conditions and are thus considered the gold standard 
for deducing causality (126). Observational data, on the 
other hand, rarely contain enough contextual information 
to allow for robust causal data analysis. This is particularly 
problematic if correlations are mistaken for causation 
when developing health intervention models, which have 
a direct impact on clinical care (126). As most of the big 
data resources that are available for ML are cross-sectional 
observational data, rather than controlled clinical trials, 
solutions are needed to overcome these limitations. One 
strategy to infer causality from observational data is to 
model counterfactual predictions. Counterfactuals allow 
us to ask “What would have happened, had a different 
intervention been applied?”, rather than being limited to 
“What happened?” or “What will happen?” and this is a 
line of research that shows promise (123). 

Algorithmic bias

Algorithmic unfairness poses another major obstacle to 
the translation of ML to clinical practice. Because ML 
models adaptively improve their performances by “learning” 
information directly from the data, the success of the model 
is acutely sensitive to data quality. Under-representation of 
minority subgroups in the dataset may create a blind spot in 
the model and introduce a discriminatory bias toward that 
group of patients (127). The problem is almost always an 
unintended property of the dataset and not the conscious 
choice of the researchers, but there is a risk of the model 
being implemented into practice with the algorithmic bias 
remaining undetected. For instance, multiple patients from 
African or unspecified ancestry had their benign genetic 
variants misclassified as pathogenic (128). The cause for 
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genetic misdiagnoses and potential health disparities was 
identified as the failure to account for genetic diversity 
in non-European populations at the time of testing. The 
misclassification was resolved with the inclusion of genetic 
data for African ethnic patients in the training groups (128). 
For this reason, algorithms should always be designed after 
careful consideration of all relevant variations in patient 
demographics and pathologic states in real-world settings. 
This is to ensure the training data truly represents the 
population of the intended deployment community.

Validation and generalisability

Other than technical limitations, there are other issues 
that obstruct the realisation of ML’s potential in real-world 
practices. Medicine is an ever-changing field, where clinical 
and operational practices in clinical settings constantly 
evolve. The introduction of an ML algorithm may lead to a 
paradigm shift in normal practice. Subsequently, the input 
data will also change and no longer resemble the data that 
was used to train the model (129). To maintain performance 
over time, models should be constantly monitored for 
deteriorating performance and may need to be subjected 
to periodical recalibration or retraining. Dataset shift may 
occur due to the technical differences between institutions 
as well as variations in local clinical practices (130). Thus, it 
can be challenging to implement an ML model in a different 
setting to where it was originally trained. This issue can be 
mitigated by conducting site-specific training to adapt the 
existing model to a new study population. For instance, a 
deep learning model for diagnosing diabetic retinopathy 
from medical images failed to perform as expected when 
implemented across clinics in Thailand, partly due to the 
fact that the model was trained with images collected from 
clinics with different lighting conditions (131).

For all these reasons, the generalisability and real-world 
performance of the model need to be externally validated 
against adequately sized datasets from institutions other than 
where it was originally trained. However, there is a critical 
scarcity of public healthcare repositories at the present time. 
Multitudes of usage policies, security, and privacy concerns 
further add to the complexity of data collaboration (132).  
A 2019 systematic review for the diagnostic use of ML 
in medical imaging found that external validation was 
performed only on 6% of 516 published studies (133).

Finally, ML models, although not being a major 
concern at present, are susceptible to adversarial attack 
and manipulation (134). We must always be mindful that 

machine learning models do not truly learn and understand 
their tasks – at least not in the same way that a human 
does. The models are simply a chain of mathematical 
algorithms, designed to mathematically map the input 
data to the targets. As such, ML models are brittle and 
can be easily fooled by explicitly designed inputs (134).  
For example, by adding the noise from a picture of a 
malignant mole to that of a benign mole, a study managed 
to trick the ML model into classifying the benign mole as 
malignant (135).

These findings highlight an alarming trend that AI 
studies are neither carried out nor reported with the 
same rigour as other medical research. To improve the 
quality of scientific AI investigations and to accelerate 
the clinical adoption of AI-based solutions, AI extensions 
have been added to both the SPIRIT (Standard Protocol 
Items: Recommendations for Interventional Trials) and 
CONSORT (Consolidated Standards of Reporting 
Trials) guidelines (SPIRIT-AI and CONSORT-AI,  
respectively) (136).

Conclusions

The realisation of precision medicine requires effective 
distillation of high-dimensional data across clinical, 
biological, patient-generated and environmental domains. 
AI, especially ML, is a critical enabler in this respect. The 
low-hanging fruit of ML in medicine are already successfully 
deployed in automating routine clinical processes to reduce 
the burden on clinical staff, for instance by prioritizing 
triage order in the emergency department or automating 
medical image evaluation. Whilst most of ML is currently 
based on analysis of observational data, which limits causal 
inference, the convergence of computational power, data, 
algorithms and greater traction with healthcare researchers 
has created the right inflection point for an exponential 
growth in rigorous discovery and implementation studies 
in precision medicine, as reflected in the number of 
publications in the area over the last five years. The hype 
hitherto associated with the precision medicine and ML 
narrative has waned with the growing realisation that ML is 
not a quick fix obviating the need for clinical and scientific 
expertise and scrutiny. However, to ensure that these 
applications are clinically useful and operationally feasible, 
a number of well-recognised methodological challenges still 
need to be overcome along with development of a rigorous 
framework for evidence generation demonstrating patient 
safety and benefit fulfilling all regulatory requirements. 
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