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Introduction

Health care is expensive. In 2017, the global burden of 
disease (GBD) was estimated to be $7.8 trillion (in US 
dollars), or about 10% of the total global gross domestic 
product, which translates into approximately $1,080 per 
capita for the world’s population. In the United States, 
comparable numbers for health care costs are 19% of 

US gross national product and $10,586 per capita (1,2). 
Moreover, this share of the GNP will continue to rise in the 
foreseeable future for several reasons, including the aging 
of the population and the advent of complex diagnostic and 
therapeutic advances. Indeed, in an International Business 
Machines (IBM) poll in 2012 of 480 economists, health 
care was determined to be the most inefficient system in the 
global economy, with waste estimated to be $2.5 to 4 trillion 
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annually (3). This healthcare inefficiency in the United 
States is complex and has been characterized by three types 
of waste: administrative waste at the national level (Medicare, 
private insurance), the level of which far exceeds that in 
comparable European and North American countries; 
significant operational waste (inefficient and unnecessary 
use of resources at the healthcare system/hospital level); 
and clinical waste (services that provide marginal or 
no health benefit at the individual patient level) (4).  
Given that productivity in health care lags behind that 
in other industries, such as information technology (IT), 
finance, insurance, real estate, and retail (5), a tremendous 
number of opportunities exist for improving healthcare, an 
industry with ever-diminishing profit margins in many of its 
sectors.

When the focus is narrowed to the global burden of 
surgery (GBS), estimates suggest that 11% to 28% of the 
GBD is attributable to the GBS. The associated worldwide 
surgical procedural volume is estimated to be 234 million 
operations annually, with an overall surgical mortality of 
approximately 0.4% and morbidity estimates ranging from 
3% to 17% (6-14). Surgical complications correlate with 
additional costs and diminished life expectancy. Results 
of the American College of Surgeons’ National Surgical 
Quality Improvement Program analysis indicated that 
any one of 22 distinct complications that developed in the 
first 30 days postoperatively reduced patients’ median life 
expectancy by an average of 69% (range 44–77%) (15).  
Thus, the imperative to reduce the incidence of perioperative 
complications is clear.

When the focus is even further narrowed to acquired 
heart disease, we can see the widespread prevalence of its 
impact. Acquired heart disease affects 30.3 million adults 
(12.1% of the US adult population) (16), and the Society 
of Thoracic Surgeons’ Adult Cardiac Database indicates 
that approximately 295,000 cardiac surgical operations are 
performed annually, with a mortality rate ranging from 1 to 
10%, depending on the procedure (17). The incidence of 
complications associated with cardiac surgery ranges from 
33% to 54% for all complications and from 11% to 17% 
for major complications (which include stroke, reoperation, 
prolonged ventilation, deep sternal wound infection, and 
acute renal failure; minor complications include atrial 
fibrillation (AF), pleural effusion, pneumonia, and deep 
venous thrombosis). These complications reduce life 
expectancy, increase patient and family dissatisfaction, have 
adverse implications for hospital-based quality metrics, and 
increase health care costs (18).

Capital expenditures on health IT continue to increase, 
to a projected $6.4 billion in 2021, a nearly 7% increase 
over the last five years (19). Although the optimal threshold 
remains unknown, this proportion will inevitably continue 
to increase steadily. That said, it is noteworthy that digital 
health venture capital increased nearly 10-fold from 2010 to 
2017; more than $40 billion was invested in digital health in 
the 2010s, reflecting the robust promise in this arena (20).

The burgeoning field of digital health care (21) includes 
telemedicine, the Internet of Medical Things (IoMT), 
remote patient monitoring devices, patient engagement and 
empowerment tools, software as medical device, advanced 
analytics, artificial intelligence (AI), cloud-based storage 
platforms, cybersecurity, wireless medical devices, mobile 
medical applications for smart phones, and novel digital 
devices (22,23). Indeed, this field has advanced so rapidly 
that technologies that were inconceivable to healthcare 
practitioners a decade ago will become routinely used in the 
next 5–10 years.

Enhanced recovery

To confront the healthcare challenges facing the country, 
the Institute for Healthcare Improvement (IHI) has 
developed the “Quadruple Aim” of population health: better 
outcomes, improved patient experience, improved clinician 
experience, and reduced costs to improve the value of health 
care (24). Achieving these goals is central to the Enhanced 
Recovery After Surgery (ERAS) movement. This initiative 
has worked toward improving the quality and value of 
surgical care by combining multimodal strategies that 
mitigate the stress response to reduce postoperative pain 
without opioids, overcome postoperative ileus, and reduce 
intravascular volume shifts while preserving and enhancing 
physiologic reserve (25-28). The invasiveness and duration 
of cardiac surgery and cardiopulmonary bypass amplify 
the routine physiologic stressors of surgery by causing 
more profound metabolic, inflammatory, and immunologic 
derangements (29,30). The ERAS efforts focus on the 
critical members of the perioperative care team: surgeon, 
anesthesiologist, intensivist, nurse, perfusionist, physical 
therapist, pharmacist, and nutritionist, among others. 
Furthermore, these perioperative care efforts highlight the 
British cycling coach Sir David Brailsford’s concept of the 
“aggregation of marginal gains” whereby small, incremental 
gains across a broad platform of processes can cumulatively 
achieve meaningful benefits and improved outcomes (31).

Ultimately, the benefit of any technological advance 
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is determined by whether it serves the needs of patients 
and their physicians and care teams. An insightful survey 
from the James Lind Alliance Priority Setting Partnership 
in adult heart surgery (32) addresses this question. This 
survey of 629 heart surgery patients, caregivers, and 
health care professionals aimed to identify their biggest 
priorities with respect to cardiac surgery. While patients 
and providers had slightly different highest priorities, the 
most common questions focused on basic information 
(improving outcomes in patients with comorbidities, when 
heart valve intervention should occur in asymptomatic 
patients, minimally invasive vs. open heart surgery), 
quality of life (expected course after heart surgery, frailty 
and heart surgery, the value of prehabilitation), and the 
risks and management of postoperative complications 
(minimizing damage to other organ system and reducing 
postoperative AF or wound infections). This information 
about patients’ priorities helps clinicians recognize that they 
and their patients do not necessarily have the same focus 
when it comes to surgery. The ultimate embrace of the 
technological advances will rest on how well these priorities 
are addressed for all involved; indeed, patient empowerment 
and shared clinical decision-making are increasingly 
recognized as the major determinants of value (33).

In addition to meeting patient and provider expectations, 
technology that transforms health care will also need 
to meet the Quadruple Aim, bend the cost curve down, 
and promote real growth in productivity to benefit the 
healthcare system. Specifically, technology can aggregate 
and integrate volumes of clinical, care process, and 
financial data that can be rapidly analyzed to provide 
insight and improve care. Care variation, responsible for 
many disparate outcomes in health care, can be reduced, 
and outcomes can be reliably improved. Technology also 
bolsters risk assessment and decision support. Similarly, 
technology can reduce friction between employees by 
enhancing interoperability, workflow, and ease of use. The 
opportunity to identify premium talent can be leveraged 
with technology by evaluating adherence to standards of 
care and recognizing superior outcomes.

Solutions and technologies

The world has been rapidly transformed by computing 
and the internet into a less centralized network of people 
and technology (34,35). These developments have been 
outlined by Peter Diamandis and Steven Kotler and 
classified into the “Six Ds” of exponential technologies: 

Digital information tools that Deceptively increase in scope 
and utilization to Disrupt, Demonetize, Dematerialize, and 
Democratize information while accelerating the ongoing 
transformation (36). All of these principles conform to 
the ERAS goals of empowering the patient and healthcare 
team by creating a more streamlined, evidence-based care 
pathway that is followed both in the hospital immediately 
after surgery and at home during recovery.

Data as a platform

Data as a platform (DAAP), which fuses the technology 
ecosystem and satisfies the specific needs of different users, 
is foundational to enhancing and transforming surgical 
care (37). The growth of health data is staggering, with 
153 exabytes (i.e., one quintillion bytes) produced in 2013 
and as many as 2,314 exabytes forecasted for 2020 (48% 
annual increase) (38). Strategic imperatives for DAAP 
include scalability, rapid onboarding of novel data sources, 
and support of all types of data and analytics. The potential 
benefits will include improved personalization, access, 
prediction, health, and quality and cost of care (39,40). 
However, issues regarding governance, security, and privacy 
are important and will require thoughtful consideration 
from all stakeholders in the health care enterprise.

Wearables and the Internet of Medical Things

Approximately 80% of patients have smartphones, and 90% 
have some type of mobile phone. Additionally, 17% to 29% 
of patients check their smart device 50 or more times a day. 
The average person uses their phone 2.5 hours daily, and 
more than one-third of people look at their smartphone 
within 5 minutes of waking up (41-43). Wearables, such as 
smartwatches and fitness bands, are used by 5% to 11% of 
the world’s adult population (42). The complementary and 
unique digital connection to patients provides an opportunity 
to improve quality and value as components of the IoMT, 
where—this year—an estimated 28 billion discrete data 
elements will be connected (44). This incredible penetration 
of technology provides a rich infrastructure that can be 
easily incorporated into the health care ecosystem, where the 
prospects of ERAS can be transformational. By providing 
patients with wearable technology, a unique level of patient 
engagement can be harnessed for earlier identification 
of potential problems and deviations from the expected 
postoperative course.

The average age of adult cardiac surgery patients is 
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greater than 60 years. In this patient population, attention 
is required to address technical challenges with setup and 
use due to impaired “mobility, vision, memory, and hearing, 
plus, all too frequently, social isolation, loneliness, and 
depression” (45). It is important to remember that, for 
some older individuals, there is a valuable aspect of social 
interaction with the health care system that technologic 
solutions will supplant. The process of engaging patients 
via remote monitoring is important and involves building 
rapport, sharing information, and providing guidance (46).  
Our patient rate of compliance in this population is 
favorable (>90%) and exceeds the rates documented by 
others (47,48). As Krishnaswami and colleagues (49) 
highlight, the key to gerotechnology as it addresses 
cardiovascular care is to improve patient-centered care, 
lower treatment-related risk, improve quality of life, and 
alleviate symptoms. This involves identifying the goals 
of care, assessing the barriers to the digital use of health, 
optimizing the match between patient and technology, 
providing adequate support to the participant and 
caregiver, and continually reassessing the impact of these 
technologies and optimizing the process further. Improving 
the engagement of older patients can have positive effects 
and may reduce readmissions if potential complications 
are recognized early on, with clear financial benefits to the 
healthcare system.

One opportunity that wearable technology provides 
is in optimizing care for AF. AF is a common cardiac 
arrythmia and is associated with increased risk of morbidity 
from stroke, mortality, and healthcare expenditures. 
Its prevalence is estimated at almost 1% of the general 
population and 10% of people aged 65 years or older, with 
a sizable portion of cases (13%) being undiagnosed (50).  
The Stanford University Apple Heart Study is the 
archetype for using wearable technology (Apple Watch) 
for pragmatic, large-scale studies of prevalent and vexing 
health care problems such as AF (51-53). Of the 400,000 
participants recruited, 2,161 (0.52%) received an irregular 
pulse notification on their smart phone. One-third of these 
participants were found to have AF, which allowed early 
diagnosis and management of this condition.

Intelligent computing

AI was pioneered by Alan Turing (54), as well as by John 
McCarthy and his colleagues at Dartmouth College (55). AI 
can be defined as “the branch of computer science dealing 
with the simulation of intelligent behavior in computers” (56)  

and includes sensing, engaging, reasoning or decision 
making, and learning (57). AI maintains great promise in 
prescriptive (what we should do) health care computing 
efforts and will complement descriptive (what happened) 
and proscriptive (what could happen) computing.

The process of producing AI algorithms is complex, 
requiring experts, computing power, and large volumes 
of robust data structured in an organized fashion. AI 
algorithms can be static (unchanged over time) or dynamic, 
whereby data and outcomes create a virtuous cycle by 
continuing to inform and update the algorithms (58,59). 
This dynamic process and its potential are fueling rapid 
growth in health care AI; future investment in this area is 
projected to be $6.6 billion in 2021 and $36 billion by 2025 
(with a compound annual growth rate of 40% to 45%) 
(60,61). According to Accenture, “when combined, key 
clinical health AI applications can potentially create $150 
billion in annual savings for the US health care economy by 
2026” (62). The US Food and Drug Administration (FDA) 
has provided guidance on AI algorithm development but, to 
date, does not have a standardized validation process (63,64).

Similar to linear regression risk models, the quality of 
algorithms can be measured according to discrimination 
and calibration, as well as precision, recall, and accuracy (65).  
The risks of AI include, but are not limited to, bias and 
diminution of clinician decision making (66).

Various classifications are used to categorize and 
characterize AI. Familiar types of AI used in health care 
include machine learning, whereby computers learn, 
improve, make predictions, and process and analyze 
language (i.e., natural language processing) (67,68). The use 
of AI in cardiac care includes risk modeling (preoperative 
and postoperative), imaging, and natural language processing 
for electronic medical records (69). The potential of AI to 
further develop ERAS concepts may help to refine future 
iterations of ERAS guidelines. Moreover, in the operational 
framework outlined by Bentley and colleagues (4),  
the concept of clinical waste and reducing services that 
provide little or no benefit to the patient can be reduced 
once meaningful data are harvested and analyzed, and care 
pathways and protocols can be developed and implemented.

Complex modeling

Complex modeling, in which computers simulate complex 
systems with a combination of mathematics and physics, has 
been used effectively in weather and aviation simulations 
and is now increasingly used in biologic systems (70). 
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For example, complex modeling is being used to evaluate 
anatomic, physiologic, and pathophysiologic phenomena 
and shows great promise in predictably improving the 
care of cardiovascular patients (71). Valuable examples of 
this technology include characterizing relationships of 
ventricular volume, wall stress, and stroke volume associated 
with surgical ventricular reconstructive procedures or other 
intracardiac devices (72,73).

Virtual assistants

Virtual assistants can help with routine tasks such as 
compliance with therapeutic regimens, engagement and 
behavior modification, and schedule management and 
reminders (74,75). There is considerable optimism that 
virtual assistants, integrated with novel tools and evolving 
processes, can improve access to care, coordination of care, 
efficiency, engagement, and, ultimately, outcomes (75). 
The ability to harness virtual assistants for patient care 
can ensure that patients continue following the expected 
recovery course, consistent with ERAS goals.

Additive manufacturing

Additive manufacturing, also known as 3D printing (3DP), 
uses computer-aided design or a scanner for input and 
a printer that adds material layer by layer to create an  
object (76). Charles Hull created the first machine part with 
3DP in 1983, and the process is now used to provide parts in 
aerospace and automobile industries with an “on demand” 
capability to increase efficiency (77). For health care, 
data acquisition in the 3DP process can be done by using 
computerized axial tomography, magnetic resonance, and 
echocardiography to facilitate rapid prototyping for product 
development, custom implants, anatomic models, and 
virtual surgical planning, among others (78). Customized 
transcatheter replacement valves and endovascular aortic 
stent grafts are notable examples of 3DP products used to 
treat cardiovascular disease (78).

Simulation

Augmented reality (AR) has been used to remotely match 
rare, experienced talent with uncommon problems in 
other fields, such as automobile repair (79). One can easily 
extrapolate and realize AR’s potential in educating surgeons 
and performing technically challenging or high-risk surgical 
procedures (80-82). As we integrate advanced imaging and 

minimally invasive approaches, the potential usefulness 
of AR and virtual reality (VR) is advancing significantly 
and synergistically (83,84). Over time, this can lead to 
the development of better simulation exercises to train 
the entire perioperative care team to anticipate and react 
various complications in the perioperative period (85). The 
concept of failure to rescue is an important determinant of 
variation in mortality after coronary artery bypass grafting 
(CABG) surgery (86). Namely, the difference among 
hospitals is not so much the difference in the incidence 
of major complications such as stroke, renal failure, or 
prolonged mechanical ventilation; rather, the difference is 
in how quickly complications are recognized and treated to 
mitigate their severity.

Telehealth

Telehealth provides patients with remote access to health 
care via real-time, audiovisual technology. The solutions 
can be particularly valuable for solving access problems that 
result from disparities, disabilities, long physical distance 
from health care centers, and a lack of expertise and 
specialized personnel, as well as from high-risk situations 
such as virulent infections and combat. Administrative 
and clinical data can accrue from telehealth solutions and 
provide the opportunity to exponentially increase the value 
of these efforts.

The electronic intensive care unit (eICU) has been in 
existence for more than 15 years and has shown promise 
for enhancing the quality and reducing the cost of ICU 
care while also providing flexibility for clinical teams and 
scalability to include small ICUs or multiple large ICUs 
(87-92). In addition to the audiovisual technology utilized in 
the eICU, large volumes of clinical data can be acquired and 
analyzed to assist with prioritization, workflow, and decision 
support (93-95). Similarly, “tele-rounding” has been used 
for many years to leverage expertise and also to address 
the challenges of COVID-19 to minimize patients’ and 
clinicians’ risk of exposure (96,97). This clearly illustrates 
how technology could meet a specific need created by the 
COVID-19 pandemic. As social distancing requirements 
prevented the intensive care unit (ICU) multidisciplinary 
rounding process from being conducted in its normal 
fashion, virtual rounding became a necessity to reduce the 
likelihood of SARS-CoV-2 transmission among members 
of the healthcare team. These challenges were anticipated 
by ERAS thought leaders, who offered guidance to navigate 
cardiac surgery perioperative care in the COVID world (98).  
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Although telemedicine will continue to become more 
prevalent, it is important to remember that in-person 
communication among patient, nurse, and physician still has 
a valuable reassuring and therapeutic role that technology 
platforms should strive to enhance and not eliminate.

Cybersecurity

The novel and large volumes of data that provide a rich 
opportunity to transform health care present a real and 
growing risk. Cybersecurity risks include the hacking 
of medical insurance information, office and hospital 
medical records, and devices, in addition to phishing and 
geolocation threats (3,99-102). Interestingly, approximately 
25% of health care cybersecurity attackers are “insiders,” 
which is an order of magnitude greater than that seen 
in financial services, manufacturing, and retail (3). It is 
estimated that 175 million records have been breached since 
2010, with offices and hospitals being the most frequently 
targeted victims of cybercrime and insurance companies 
having lost the greatest volume of records (99). Two-
factor authentication and other strategies to reduce the 
vulnerability of medical records are increasingly prevalent 
and effective; these measures will not only reduce the actual 
risk of hacking but also preserve the public’s faith in the 
integrity of the system.

Solutions and technologies by phase of care

Acute care

Preoperative care and prehabilitation
The novel coronavirus (COVID-19) pandemic has 
accelerated the use of telemedicine and digital health across 
most subspecialties, including cardiovascular care. The 
exponential growth of this demand for increased technology 
requires a “network” solution (i.e., better technological 
solutions and processes to accelerate information flow, 
decision making, and the matching of demands with 
resources) (103). Atrium Health’s Sanger Heart and Vascular 
Institute in Charlotte, North Carolina rapidly transitioned 
to approximately 95% virtual visits (>500/day) (104), and 
McKinsey & Company data show that “consumer adoption 
has skyrocketed, from 11 percent of US consumers using 
telehealth in 2019 to 46 percent of consumers now [middle 
of 2020] using telehealth...and providers have rapidly 
scaled offerings and are seeing 50 to 175 times” (105).  
Furthermore,  McKinsey & Company asserts  that 

approximately $250 billion in care could be virtualized (105).
The four pillars of remote patient monitoring are (I) 

engagement via video visits, messaging, pathways, protocols, 
and patient reported outcomes (PROs); (II) a secure 
audiovisual interface; (III) biosensors that allow clinicians 
to acquire data in a way that replaces and supersedes the 
traditional physical exam; and (IV) data management 
and analytics that can apply AI, and specifically machine 
learning, algorithms to large amounts of data generated 
by sensors (106,107). Each of these technologies will have 
variable roles and applications for different patient subsets, 
but the ERAS concepts can be tied into all aspects of remote 
patient monitoring.

Preoperative, quantified risk assessment should be 
routinely performed to help patients and clinicians make 
decisions and plans (and there is strong evidence that 
greater risk correlates with greater complications and 
costs) (18,108,109). Technologies such as cardiopulmonary 
exercise testing and anaerobic threshold quantification 
(110-112), biomarkers (113-115), and frailty (116,117) 
could be incorporated into routine risk assessment and 
guide modifiable risk-mitigation strategies. Evidence-based 
approaches that promote prehabilitation can contribute 
meaningfully to optimizing patients for surgery.

The aggregation of novel and large volumes of data 
fuels AI’s capacity to improve the efficacy and speed of the 
modeling process for mortality and morbidity (118-120). 
This platform offers patients and referring clinicians the 
opportunity for genuine informed consent and realistic, 
individualized assessments of risk and recovery prospects 
before surgery. AI has been investigated in various 
types of testing and imaging. AI has been utilized in 
electrocardiography for dysrhythmia detection and in chest 
radiography, with promising results in accuracy and speed 
of interpretation (121-123). AI also exhibits promise in 
more advanced imaging such as echocardiography and MRI 
(124,125).

Of the 25 machine learning algorithms that received 
FDA approval as of 2019, 13 of them were for medical 
imaging, mostly cardiovascular and breast imaging (126). 
Of the 12 non-imaging-related algorithms, three were for 
detecting AF. FDA approvals will continue to increase as AI 
algorithms proliferate across all areas of medicine and are 
validated in different contexts and clinical settings. Recent 
contributions in cardiovascular surgery are highlighted in a 
review by Kilic (59) indicating that the role for AI will only 
continue to increase in scope.

Novel remote monitoring tools in cardiovascular care are 
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currently being used by a few centers in the management 
of congestive heart failure, dysrhythmia detection, and 
perioperative care (127,128). Monitoring of vital signs 
with cloud-based data sharing is provided by a variety 
of companies, each with different niches (129-134). An 
important, emerging area is engagement tools and PROs 
that increase patients’ involvement in their care. Mobile 
device applications, commonly used in nonmedical settings, 
are now used to guide patients through their cardiac 
surgery journey, measure their well-being, and decrease 
complications (106,107). The next generation of ERAS 
cardiac guidelines will continue to define the appropriate 
implementation phase and roles for these technologies.

Operating room
Robotic surgery and telesurgery have the potential to help 
with surgical education, treating remote patients, risky 
environments, and ergonomics (135-137). The operational 
workflow, which allows a day’s worth of operations to be 
completed efficiently, can also be monitored and improved (138).  
In the realm of the individual surgeon, surgical coaching 
with technology offers great promise to improve surgical 
skills and outcomes (139). This type of coaching is not 
natural to surgeons in practice, but just as major league 
baseball players have hitting coaches and watch videotapes 
of their performance, similar, periodic engagements of 
surgeons in practice may be an opportunity to enhance life-
long learning.

“Hyper-realistic” training modules created to simulate 
real-world stress and measure the stress response and 
regulation with VR (ARENAXR) (140) have the power to 
train surgical teams in pioneering ways that focus beyond 
technical skill acquisition to include human factors such as 
stress, decision-time, and 360-degree awareness.

As noted above, wearables for tracking activity, recovery, 
and sleep are becoming ubiquitous, easy to use, and 
affordable. By placing sensors on frontline medical teams 
to track stress and rest, medical leaders—for the first time 
in history—have the ability to create real-time dashboards 
on their health and performance and, more importantly, 
be sophisticated about understanding burnout (141). Most 
medical practitioners traditionally have been treated in a 
“one size fits all” manner; perhaps these dashboards will 
allow more individualization and personalization in several 
areas. This will become critical as the cardiovascular surgical 
workforce becomes more diverse. Moreover, healthcare 
organizations demonstrating concern for the well-being of 
their workforce will be seen, not simply as a bonus, but as a 

necessity for the next generation of healthcare workers.
Similar to commercial aircraft black boxes, the operating 

room can be outfitted for “real-time data capture and 
deep clinical analysis of operating room activity...and 
this information provides comprehensive, objective, 
and clinically relevant insights into the perioperative 
environment” (142). The potential benefits for quality and 
safety are manifold (143-145). Technology also exists to 
mitigate the risk of “never events” such as retained objects 
(146-148). An important consideration in all of these 
technologies is who owns the data: hospitals, the individual 
surgeon, the patient, the third-party payor? What happens 
if malpractice is alleged or hospital disciplinary actions 
are invoked and these recordings are used, not as an 
opportunity for improvement, but as a means for reprimand, 
censure, or litigation? These issues are not simple and will 
require thoughtful deliberation and the establishment of 
boundaries, respecting the privacy of not just the patient 
but also the healthcare team.

Traditional data sets can be augmented with additional 
data (such as the number of admissions, the complexity of 
patients as measured by acuity scores, high patient-to-nurse 
ratios, and the experience level of staff) to improve risk 
assessment and mitigation (65,149).

Post-acute care

Continuity, connectivity, and coordination across the 
continuum are valuable for transforming health care and 
vital for higher-risk endeavors such as surgery (75). As 
the archetype for the advanced, cardiac, periprocedural 
home, Perfect Care remotely monitors cardiac patients 
with a combination of video visits; messaging that 
includes images; biometrics via fitness trackers, scales, 
and sphygmomanometry; and PROs (150). A precision, 
personalized approach can be tailored to include pulse 
oximetry, glucometry, and monitoring of anticoagulation 
(150-152). In the first nine months of Perfect Care at the 
Sanger Heart and Vascular Institute, the observed median 
postoperative length of stay was half a day less than the 
benchmark, and the readmission rate was approximately 
60% of the benchmark (KWL, unpublished data, 01 July 
2019 –28 February 2020).

Virtual cardiac rehabilitation has improved compliance, 
reduced readmissions, and reduced associated costs, as well 
as producing a sustained reduction of cardiovascular risks 
(e.g., increased exercise capacity and dietary quality, with 
reductions in cholesterol levels) (153-155). Table 1 lists these 
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Table 1 Valuable enhanced recovery technologies by designee and phase of care

Variable Patient Clinician Institution

Preoperative Engagement AI-risk assessment AI-risk assessment

Education AI-diagnostics & imaging

Physiologic assessment

Biomarkers

Remote patient monitoring

Intraoperative Robotics Device tracking

Simulation

Hearable coaching

Biosensors

Postoperative Biomarkers Tele-ICU Tele-ICU

Remote patient monitoring Tele-rounding Tele-rounding

AI-risk mitigation AI-risk mitigation

Post-acute care Remote patient monitoring Remote patient monitoring Remote patient monitoring

All Data as platform

AI, artificial intelligence; ICU, intensive care unit.

technologies and the phases of care that offer the most 
potential to enhance recovery.

Summary and future

A more adaptable, higher-quality, safer, and, ultimately, 
more valuable health care system requires improved 
efficiency and efficacy in matching demands with 
resources. Technologies to improve data management and 
analytics, digital and telehealth tools, simulation, enhanced 
cybersecurity, and others, combined with ERAS efforts, 
have tremendous potential to assist in realizing the IHI’s 
Quadruple Aim. The COVID-19 pandemic may accelerate 
many of these processes to transform the health care 
landscape more rapidly than we could have imagined mere 
months ago.

The near future of enhanced recovery efforts will include 
aggregating the most valuable technologies, ascertaining 
interoperability, and seamless workflow, as well as 
engagement, learning, and optimization from both patient 
and clinician perspectives. It will be important to rigorously 
scrutinize the actual data and the outcomes of its use. 
Technological advances are not intrinsically valuable in and 
of themselves; ultimately, they must translate into actual 
benefits for patients, health care providers, and health care 

systems.
The  fu ture  w i l l  a l so  inc lude  advancement  o f 

knowledge about engagement, improved education and 
implementation, and mitigating the risk of clinician 
burnout. Technological advancements will be made in 
intelligent computing, novel biosensors, faster networks, 
and the incorporation of genomics, proteomics, and other 
biotechnologies, as well as quantum computing. The role of 
technology and enhanced recovery efforts will be a catalyst 
for optimizing patient outcomes after cardiac surgery.
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